44. Scott L. Brooks, Zihao Liang, Hyunki Yeo, Bryan W. Boudouris, and Andrew C. Weems “Bioderived Radical Polymers for Sustainable Energy Storage Materials” ACS Applied Energy Materials 2023 DOI: 10.1021/acsaem.3c02060

43. Olivia King, Maria M. Pérez-Madrigal, Erin R. Murphy, Ali Al Rida Hmayed, Andrew P. Dove, and Andrew C. Weems “4D Printable Salicylic Acid Photopolymers for Sustained Drug Releasing, Shape Memory, Soft Tissue Scaffolds” Biomacromolecules 2023 24 (11), 4680-4694DOI: 10.1021/acs.biomac.3c00416

42. Scott Brooks, David Merckle, and Andrew C Weems “4D Photopolymers Derived From Ring-Opening Copolymerization of Cyclic Anhydrides and Limonene Oxide” ACS Sustainable Chemistry & Engineering 2023 11 (28), 10252-10263DOI: 10.1021/acssuschemeng.3c00377

41. Grant Guggenbiller, Scott Brooks, Olivia King, Eric Constant, David Merckle, and Andrew C Weems “3D Printing of Green and Renewable Polymeric Materials: Toward Greener Additive Manufacturing” ACS Applied Polymer Materials 2023 5 (5), 3201-3229DOI: 10.1021/acsapm.2c02171

40. G. Guggenbiller, A. Al Balushi, A. C. Weems, “Poly(β-hydroxythioether)s as shape memory polymer foams for oil sorption in aquatic environments” J. Appl. Polym. Sci. 2023, 140(12), e53569. https://doi.org/10.1002/app.53569

39. Merckle, David, Olivia King, and Andrew C. Weems. “Donor-Acceptor Covalent Organic Frameworks Films with Ultralow Band Gaps to Enhanced Third-Order Nonlinear Optical Properties.” ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023).

38. David Merckle, Olivia King, and Andrew C. Weems, “Ring-Opening Copolymerization of Four-Dimensional Printable Polyesters Using Supramolecular Thiourea/Organocatalysis” ACS Sustainable Chemistry & Engineering 2023 11 (6), 2219-2228DOI: 10.1021/acssuschemeng.2c05552

37. Merckle, D.; Weems, A. C. Organocatalysis in Ring Opening Copolymerization as a Means of Tailoring Molecular Weight Dispersity and the Subsequent Impact on Physical Properties in 4D Printable Photopolymers. Polym. Chem. 2023, 14 (31), 3587–3599. https://doi.org/10.1039/D3PY00608E.


36. S.L. Brooks, M.C. Arno, A.P. Dove, A.C. Weems, “Postfabrication Functionalization of 4D-Printed Polycarbonate Photopolymer Scaffolds,” Applied Polymer Materials, 2022, 4(8), 5670-5679 DOI: 10.1021/acsapm.2c00648

35. S. Brooks, E. Constant, O. King, and A. C. Weems, “Stereochemistry and stoichiometry in aliphatic polyester photopolymers for 3D printing tailored biomaterial scaffolds,” Polymer Chemistry, Mar. 2022. DOI https://doi.org/10.1039/D1PY01405F


34. Brooks, S., Cartwright, Z., Merckle, D., Weems, A. C., 4D Aliphatic photopolymer polycarbonates as direct ink writing of biodegradable, conductive graphite-composite materials. Polym. Compos. 2021, 1https://doi.org/10.1002/pc.26211

33. A.C. Weems, M.C. Arno, W. Yu, et al. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat Commun 12, 3771 (2021). https://doi.org/10.1038/s41467-021-23956-6

32. D Merckle, E Constant, Z Cartwright, AC Weems. Ring Opening Copolymerization (ROCOP) of 4D Printed Shape Memoryhttps://pubs.acs.org/doi/abs/10.1021/acs.macromol.0c02401 Polyester Photopolymers using Digital Light Processing. Macromolcules, 2021, 54 (6), 2681-2690.

Here we report how ring opening copolymerization (ROCOP) of readily available and well-known anhydrides and epoxides may be used to produce a library of polyesters capable of being leveraged in thiol-ene photopolymer resins for processing by stereolithography or digital light processing. These polyesters display 4D behavior (shape memory), can be processed into complex 3D structures readily, and display robust mechanical properties. These materials, with their advanced properties and robust mechanical behaviors, represent a significant advancement in the quest for 4D printing materials

31. O King, E Constant, AC Weems. Shape Memory Poly(β-hydroxythioether) Foams for Oil Remediation in Aquatic Environments. ACS Appl. Mater. Interfaces 2021, 13, 17, 20641–20652

The use of thiol-epoxy “click” type reactions are presented towards producing porous polymeric foams that are used for scavenging spilled oil in aqueous environments. Characterizations of the foams are further presented that demonstrate post-foaming functionalization by forming urethane linkages with the residual hydroxyl groups, and a cost-benefit comparison is performed to determine the most effective method for environmental remediation.


30. M. Inam, M.C. Arno, A.C. Weems, A.L.A. Binch, S. Richardson, J.A. Hoyland, R.K. O’Reilly, A.P. Dove, Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat Commun 11, 1420 (2020). https://doi.org/10.1038/s41467-020-15206-y

29. J.T. Worch, A.C. Weems, M.C. Arno, A.P. Dove. Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nat Commun 11, 3250 (2020). https://doi.org/10.1038/s41467-020-16945-8

28. A.C. Weems, M.P. Perez, M.C. Arno, A.P. Dove, 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility Biomacromolecules 202021 (3), 1037-1059 https://doi.org/10.1021/acs.biomac.9b01539


27. A.C. Weems*, W Li, DJ Maitland, LM Calle. Mesoporous Silica Nanoparticles to Tune Oxidative Degradation Rates in Composite Shape Memory Polymers. Recent Progress in Materials 2019;1(4):16; doi:10.21926/rpm.1904008.

26. A.C. Weems, K.D. Chiaie, R. Yee, A.P. Dove. Selective Reactivity of Myrcene for Vat Photopolymerization 3D Printing and Postfabrication Surface Modification. Biomacromolecules, (2019) 2020, 21, 1, 163-170. https://doi.org/10.1021/acs.biomac.9b01125

25. A.C. Weems, C.S. Stubbs, J.T. Worch, K.D. Chiaie, A.P. Dove. 3D Printing of Terpene-based Photopolymer Resinc Inks. Polym Chem, 2019. https://pubs.rsc.org/en/content/articlehtml/2019/py/c9py00950g

24. A.C. Weems, K.T. Wacker, D.J. Maitland. Biostable porous shape memory polyurethanes. J Appl Polym Sci, 2019, 136 (35), 47857.

23. Z.A. Coe, A.C. Weems, A.P Dove, R.K. O’Reilly. Synthesis of Monodisperse Cylindrical Nanoparticles via Crystallization-Driven Self-Assembly of Biodegradable Block Copolymers. J Visual Experim, 2019, 148.


22. A.C. Weems*, A.D. Easley, S.R. Roach, D.J. Maitland. Highly Crosslinked Shape Memory Polymers with Tunable Oxidative and Hydrolytic degradation Rates and Selected Products based on Succinic Acid. ACS Appl Bio Mater, 2018, 2(1), 454-463.

21. A.C. Weems*, J.K. Carrow, A.J. Gaharwar, D.J. Maitland. Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules, 2018,51 (22), 9078-9087

20. K.T. Wacker, A.C. Weems, S.M. Lim, S. Khan, S.E. Felder, A.P. Dove, K.L. Wooley. Harnessing the Chemical Diversity of the Natural Product Magnolol for the Synthesis of Renewable, Degradable Neolignan Thermosets with Tunable Thermomechanical Characteristics and Antioxidant Activity. Biomacromolecules, 2018, 20(1), 109-117.

19. A.C. Weems*, W. Li, D.J. Maitland, L.M. Calle. Polyurethane Microparticles for Stimuli Response and Reduced Oxidative Degradation in Highly Porous Shape Memory Polymers. ACS Appl Mater Interfaces, 2018, 10(39), 32998-33009.

18. A.D. Easley, S.M. Hasan, J. Frederick, A.C. Weems, M.B.B. Monroe, D.J. Maitland. Thermo-mechanical Properties and Actuation Profiles of Shape Memory Polyurethane Foams. J Appl Polym Sci, 2018, accepted


17. Z.A. Steelman, A.C. Weems, A.J. Traverso, J.M. Szafron, D.J. Maitland, V. Yakovlev. Revealing the Glass Transition Shape Memory Polymers using Brillouin Spectroscopy. Appl Phys Lett, 2017, 111 (24), 241904. 

16. A.J. Boyle, M.A. Wierzbicki, S.M. Herting, A.C. Weems, A. Nathan, W. Hwang, D.J. Maitland. In Vitro Performance of a Shape Memory Polymer Foam-coated Coil Embolization Device. Med Engin Phys, 2017, 49, 56-62. DOI: 10.1016/j.medengphy.2017.07.009

15. A.C. Weems, K.T. Wacker, A.J. Boyle, J.E. Carrow, D.J. Maitland. Degradation of Highly Crosslinked, Amorphous Shape Memory Polymers and the Relationship for Endovascular Materials. Acta Biomater, 2017, 59, 33-44. DOI: 10.1016/j.actbio.2017.06.030.

14. A.C. Weems, J.E. Raymond, M. Wierzbicki, T. Gustafson, D.J. Maitland. Shape Memory Polymers with Visible and Near-infrared Imaging Modalities: Synthesis, Characterization, and In Vitro Performance. RSC Adv, 2017, 7, 19742. DOI: 10.1039/C6RA28165F

13. A.C. Weems, A.D. Easley, J.M. Szafron, J.A. Smolen, D.J. Maitland. Synthesis and Characterization of Magnetic Resonance Visible Shape Memory Polymer Foams. Acta Biomater, 2017. DOI: 10.1016/j.actbio.2017.02.045.

12. A.C. Weems, A.J. Boyle, D.J. Maitland. Two-year Performance Study of Porous, Thermoset, Shape Memory Polyurethanes intended for Vascular Medical Devices. Smart Mater Struct, 2017, 26 (3), 035054. DOI: 0.1088/1361-665X/aa59ec.

11. S.M. Hasan, A.C. Weems, R.L. Muschalek, D.J. Maitland, T.S. Wilson. Biodegradation of Shape Memory Polymers, Lifetimes and Compatibility of Synthetic Polymers. Edited by J Lewicki. Wiley-Scrivener, 2017.

10. Biodegradation of Shape Memory Polymers, Lifetimes and Compatibility of Synthetic Polymers. Hasan, S. M.; Weems, A. C.; Muschalek, R. L.; Maitland, D. J.; Wilson, T. S. Edited by J Lewicki. Wiley-Scrivener, 2017


9. Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices. Weems, A. C.; Boyle, A. J.; Maitland, D. J. Smart Mater. Struct., 2016, 26

8. Solvent Stimulated Actuation of Shape Memory Polymer Foams using Dimethyl Sulfoxide and Ethanol. Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J. Smart Mater and Struct, 2016, 25.

7. Rapidly-cured of isosorbide-based cross-linked networks using thiol-ene click chemistry. Kristufek, T. S.; Kristufek, S. L.; Lonnecker, A. T.; Link, L. A.; Weems, A. C.; Raymond, J. E.; Wooley. K. L. Polym. Chem., 2016, 7, 2639.

6. Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles. Hasan, S. M.; Thompson, R. S.; Emery, H.; Nathan, A. L.; Weems, A. C.; Zhou, F.; Monroe, M. B. B.; Maitland, D. J. RSC Adv., 2016, 6, 918.

5. Embolic applications of shape memory polyurethane scaffolds. Landsman, T. L.; Weems, A. C.; Hasan, S. M.; Thompson, R. S.; Wilson, T. S.; Maitland, D. J.; in Advances in Polyurethane Biomaterials, ed. Cooper S. L. and Guan, J. Woodhead Publishing 2016

2015 and Earlier

4. Examination of radio-opacity enhancing additives in shape memory polyurethane foams. Weems, A. C.; Raymond, J. E.; Wacker, K. T.; Gustafson, T. P.; Keller, B. E.; Wooley, K. L.; Maitland, D. J. J. Appl. Polym. Sci., 2015, 132.

3. A.C. Weems, H.V. Vo. Computational Comparison of One-Piece Metacarpo-Phalangeal/Phalangeal-Phalangeal Total Joint Replacements. J Biomed Sci Engin 2014, 7(7), 427. DOI: 10.4236/jbise.2014.77045.

2. A.C. Weems, H.V. Vo. A Novel Design of Total Metacarpal/Metatarsal-Phalangeal Total Joint Replacement. J Mech Engin Auto, 2014, 5, 391.

  1. A.C. Weems, H Vo. A Novel Design of Total Metacarpal/Metatarsal-Phalangeal Total Joint Replacement Device. Pro Am Soc Eng Ed, 2013.


  1. A.C. Weems. Metacarpal-phalangeal prosthesis, US 9132019 B2, awarded 15 Sept 2015
  2. A.C. Weems, JE Raymond. (July 2015) Method of incorporation of fluorescent and near infrared modalities into shape memory polymers
  3. M.B. Monroe, D.J. Maitland, A.C. Weems, B.K. Keller, G. Fletcher. Antimicrobial Shape Memory Polymers, US 62/430620. Filed 6 December 2016
  4. A.C. Weems, G. Fletcher, L. Nash, T.S. Wilson, S.M. Sayyeda, D.J. Maitland. Biostable and Non-Degradable Shape Memory Polymers and Foams. TAMU064852, internally filed 25 March 2017.
  5. A.C. Weems, A.P. Dove. Polymer Resin for Shape Memory Materials. COAP 2017032, Filed 12 June 2017
  6. A.C. Weems, A.P. Dove. Biocompatible Materials. PCT/GB2018/051521. Filed 5 June 2018
  7. A.C. Weems, A.P. Dove. Dual Wavelength Crosslinkable Photopolymers and 3D printing. GB 1906987.1. Filed 17 May 2019.
  8. A.C. Weems, A.P. Dove. 3D Printable Adhesives with Tunable Properties.
  9. A.C. Weems, A.P. Dove. 3D Printing of Anti-Inflammatory, Biocompatible Materials with Tunable Drug Release Profiles.
  10. A.C. Weems. 3D Printed Lumpectomy Device for Improved Tissue Healing and Radio-targeting. *Filing September 2020